

IMPACT OF RECENT US EPA PM_{2.5} GUIDANCE ON NSR PERMITS

ARIJIT PAKRASI, PH.D., P.E.

PRESENTED IN THE A&WMA GULF COAST CHAPTER ANNUAL CONFERENCE AND EXHIBITION | MARCH 21, 2019

ENGINEERING & SCIENCE further insight.

TOPICS

- NSR RECAP
- PM_{2.5} MODELING ISSUES
- PM_{2.5} REGULATORY DEVELOPMENTS
- USEPA GUIDANCE ON SECONDARY PM_{2.5} AQIA
- SUMMARY AND RECOMMENDATION

NSR RECAP

- NSR Program:
 - PSD in attainment/unclassified areas
 - NNSR in non-attainment areas
- Two key elements in NSR PSD permit applications:
 - Best Available Control Technology (BACT) Analysis
 - Air Quality Impact Analysis (AQIA)
- PSD AQIA Objective:
 - Demonstrate that the project emission does not "cause" or "contribute" to the exceedance of NAAQS and increment
- Two levels of PSD AQIA
 - Screening analysis for <u>project emissions only</u> comparing to Significant Impact Levels (SILs)
 - Refined analysis using cumulative modeling including all "nearby" sources and background comparing to NAAQS/increment

PM_{2.5} MODELING ISSUES

- Primary Criteria Pollutants are emitted directly by emission sources to the atmosphere
 - NO₂, SO₂, CO, VOC, PM₁₀, PM_{2.5}, Pb
- Secondarily Formed Criteria Pollutants are formed in the atmosphere from precursors via complex photochemical reactions involving many variables
 - Ozone precursors are NOx and VOC
 - PM_{2.5} precursors are SO₂ and NOx
- PM_{2.5} is the only hybrid criteria pollutant both primary and secondary
 - Requires different strategies for impact analysis and control
- Primary PM_{2.5} emissions include condensable, which is often difficult to quantify

PM_{2.5} REGULATORY DEVELOPMENT

1997/ October: Initial/Revised PM_{2.5} NAAQS – Annual/24-hr avg.2006

- **2008** | May: PM_{2.5} precursors (NOx and SO₂) identified "NSR Regulated Pollutants"
- **2010** September: Sierra Club petition to engage EPA to evaluate and update modeling techniques for secondarily formed pollutants: Ozone and PM_{2.5}
- **2010** October: PM_{2.5} significant impact Level (SIL), significant monitoring concentration (SMC), and increment rulemaking
- **2012** | June: Revised PM_{2.5} NAAQS and SILs finalized January 2013
- 2013 January: D.C. Court of Appeals vacated two provisions of PM_{2.5} SILs
- **2017** | January: EPA published revisions to the "Guideline on Air Quality Models" with recommendations for quantitative assessment of secondary PM_{2.5} Impacts

RELEVANT EPA GUIDANCE ON PM_{2.5} MODELING

- **2010** March: "Modeling Procedures for Demonstrating Compliance with PM_{2.5} NAAQS Focused on background concentration for secondary PM_{2.5} impact
- **2014** | May: Non-draft version "Guidance on PM_{2.5} Permit Modeling"
- **2016** | December: Guidance on modeling impacts of secondarily formed pollutants from single sources
- **2016** December: Draft version of Guidance on MERP (Modeled Emission Rates Precursor) for Tier 1 demonstration of Ozone and secondary PM_{2.5}
- **2018** April: Memorandum on proposed final SILs for PM_{2.5} for both NAAQS and increment
 - PM_{2.5} Annual/24-hr SILs: 0.2/1.2 μg/m³
- **2018** June: Proposed revisions to 2014 Guidance on PM2.5 Modeling
 - still in the works presented in RSL 2018 workshop

MAIN ISSUE

- How to realistically model a pollutant which is emitted both directly (primary) and formed in the atmosphere (secondary)?
- Specifically, how to effectively model atmospheric formation of a photochemical reaction product (PM_{2.5}) from a single source?

2017 Revisions to "Guideline on Air Quality Models"

2017 REVISIONS TO GAQM*

- Significant Development
 - Last GAQM change was in 2005
- Acknowledges contribution of secondarily formed pollutants in air quality impact analysis
- Legally binding- unlike guidance
 - though December 2016 guidance is referenced in the rule language
- Provides a tiered approach to modeling single source impacts of secondarily formed pollutants

 * Guidance on the Use of Models for Assessing the Impacts of Emissions from Single Sources on The Secondarily Formed Pollutants: Ozone and $\rm PM_{2.5}$

EDG ENGINEERING & SCII

2017 REVISIONS TO GAQM*

- Tier 1 assessment of secondary PM_{2.5} impacts
 - Correlations based on existing photochemical grid modeling
 - Should provide a <u>credible and representative</u> estimate of secondary impact of project emissions
- Tier 2 assessment for secondary PM_{2.5} impacts
 - Mentions Chemical Transport Models (CTM) but no preferred model listed
 - Requires use of the **latest** version of 2016 December EPA guidance for single source impacts for secondarily formed pollutants
 - Case-by-case basis and permitting agency should be consulted
- Both Tiers could be used in both screening and cumulative analysis

2017 REVISIONS TO GAQM -

IMPACT

- Flexibility (by intent) in conducting AQIA
 - More on What to do; less on How to do
- Case-by-case basis approach may lead to inconsistencies
 - Similar projects may have different emission levels for compliance
- Uncertainties on what permitting agencies will accept as "credible and representative"
- Changes in 2016 guidance will require change in modeling methodology?
 - Moving target?

2016 EPA Guidance on MERPs

2016 EPA GUIDANCE ON MERPs*

(MODELED EMISSION RATE OF PRECURSORS)

- Emission rate of precursors above which the impact of secondarily formed PM_{2.5}/ and Ozone are above a critical air quality threshold (e.g. SIL or NAAQS or other)
 - Separate MERPs for 8-hour Ozone, 24-hr/annual PM_{2.5}
 - Based on data from "credible" analysis conducted by EPA and others
- MERP is a Tier 1 NAAQS compliance demonstration tool for single source impact of secondarily formed pollutants
- Not included in final rule of 2017 GAQM but discussed in preamble
 - Need approval by agencies
 - Not mandatory use by permitting agencies

* Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone and PM_{2.5} under the PSD Permitting Program; EPA-454/R-16-006 December 2016

MODELED LOCATIONS FOR **DEVELOPING MERPS**

Hypothetical Sources

EPA REPORTED IMPACTS

- Nationwide Range of MERP for 24-hr PM_{2.5} SIL:
 - NOX: 1,075 2,295 tpy
 - SO₂: 210 628 tpy
- Impact varies by emission, location, and stack height

Precursor	Area	Emissions (tpy)	Height	Source	FIPS	State	County	Max. Value (µg/m³)
NOx	CUS	500	L	1	18127	IN	Porter	0.26
NOx	CUS	500	L	3	47055	TN	Giles	0.15
NOx	CUS	500	L	4	1001	AL	Autauga	0.21
NOx	CUS	500	L	6	17155	IL	Putnam	0.10
NOx	CUS	500	L	7	17145	IL	Perry	0.14
NOx	EUS	500	Н	11	26099	MI	Macomb	0.06
SO2	CUS	500	L	6	17155	IL	Putnam	0.54
SO2	CUS	500	L	7	17145	IL	Perry	0.85
SO2	CUS	1000	Н	1	18127	IN	Porter	1.13
SO2	CUS	1000	Н	2	18037	IN	Dubois	0.34
SO2	WUS	1000	Н	2	38059	ND	Morton	0.34
SO2	WUS	1000	Н	3	8123	CO	Weld	0.41
SO2	WUS	1000	Н	4	8011	CO	Bent	0.30

Examples – 24-hr PM_{2.5}

TCEQ GUIDANCE* ON USING MERPS

- TCEQ accepts use of MERPs if the project can demonstrate "representativeness" with the modeled TX locations
 - Allowed both for SIL and NAAQS compliance demonstrations

SIL Compliance Demonstration

 $\frac{Preliminary\ Direct\ PM_{2.5}\ Impact\ (\mu g/m^3)}{PM_{2.5}\ SIL\ (\mu g/m^3)} + \frac{NO_x\ Increase\ (tpy)}{NO_x\ MERP\ (tpy)} + \frac{SO_2\ Increase\ (tpy)}{SO_2\ MERP\ (tpy)} < 1$

- Lowest TX MERPs in tpy for PM_{2.5} SIL
 - NOx: 2500 tpy (24-hr) and 10,000 tpy (annual)
 - SO₂: 343 tpy (24-hr) and 1,801 tpy (annual)
- TCEQ suggests using the lowest MERP of all TX sites; if specific MERP is used, must demonstrate "representativeness"

* TCEQ - (APDG 6443v3, Revised 09/18) Guidance on the Use of EPA MERP

ENGINEERING & S

TCEQ GUIDANCE ON USING MERPS

NAAQS Compliance Demonstration

 $BKGND_PM_{2.5}(\mu g/m^3) + DirectPM_{2.5} Impact (\mu g/m^3) + \left(\frac{NO_x Increase (tpy)}{NO_x MERP (tpy)} + \frac{SO_2 Increase (tpy)}{SO_2 MERP (tpy)}\right) * PM_{2.5} SIL (\mu g/m^3)$ $\leq PM_{2.5} NAAQS (\mu g/m^3)$

- Implied conservatisms:
 - Background, 24-hr average direct PM_{2.5} impact, and 24-hr NAAQS are statistical (98th percentile); secondary PM_{2.5} impact based on MERP is highest impact
 - Direct and secondarily formed PM_{2.5} impacts are assumed collocated; in reality these will be spatially and temporally apart
- What about sources with varying and/or intermittent emissions?

MERP FOR HYPOTHETICAL TEXAS LOCATIONS

SIL: 1.2 µg/m³

24 hr PM_{2.5} Impact

24 hr PM_{2.5} Impact

 $(\mu g/m^3/1000 SO_2 tpy)$

ENGINEERING & SCIENCE further insight.

MERP FOR HYPOTHETICAL TEXAS LOCATIONS

SIL: 0.2 µg/m³

Annual PM_{2.5} Impact (μg/m³/1000 NOx tpy)

2016 MERP GUIDANCE – IMPACT

- Provides some guidance on how to evaluate PM_{2.5} in Tier 1 analysis thus avoiding complexities of chemical transport modeling
- Demonstration of "Representative" not fully clear and will require thoughtful analysis in each project
- Conservative worst case MERP in Texas may lead to high secondary PM_{2.5} impact, especially for SO₂
- More hypothetical scenario analysis needed to develop MERPs for large areas of the US

2018 Proposed SILs

2018 PROPOSED SIL*

- 2010 SIL rulemaking based on scaling $\rm PM_{10}$ SIL with $\rm PM_{2.5}/\rm PM_{10}$ NAAQS ratio
 - 1.2 μg/m³: 24 hr PM_{2.5}
 - 0.3 μg/m³: Annual PM_{2.5}
- Remanded and vacated in 2014 following Sierra Club litigation
- 2018 Proposed SIL based on variability analysis of ambient monitoring data
 - 1,2 μg/m³: 24-hr PM_{2.5}
 - 0.2 μg/m³: Annual PM_{2.5}
- Not mandatory because not yet codified; states may use or develop own SILs; justification necessary in all cases
 - Cannot be higher than 2010 rulemaking values for PM_{2.5} 24hr and annual SILs

* Peter Tsirigotis memorandum to EPA Regional Directors dated April 17, 2018

2018 PROPOSED SIL - IMPACT

- Lower annual SIL will be exceeded at lower project emissions triggering cumulative modeling – all other factors remaining same
 - Additional controls to avoid cumulative modeling
- Lower annual SIL will extend the impact area for cumulative modeling
 - More challenging NAAQS and increment compliance demonstrations

Example:

- In a recent project, the significant impact area increased from a radius of 1.1 km to 1.8 km due to change of SIL from 0.3 ug/m3 to 0.2 ug/m3
- Approximately 6.4 sq. km additional significant impact area
- Approximately 40 tpy additional PM_{2.5} emissions to be explicitly modeled in cumulative analysis

2018 Proposed Revision to PM_{2.5} Modeling Guidance

2018 EPA PROPOSAL FOR **REVISION** OF PM_{2.5} MODELING GUIDANCE*

- Proposal only at this time may change in future based on comments
- Emissions of ANY ONE of the primary and secondary component of PM_{2.5} will trigger both primary and secondary PM_{2.5} impact modeling
 - Primary PM_{2.5} emissions > SER (10 tpy) OR
 - NOx emissions > SER (40 tpy) OR
 - SO₂ Emissions > SER (40 tpy)
- Both NOx and SO₂ impacts will have to be modeled if either primary PM_{2.5} or any of the precursors (NOx or SO₂) are above respective SERs – not just the precursor which is above the SER

* "Ozone and PM_{2.5} Permit Modeling Guidance"; Presented at 2018 EPA Regional, State, and Local Modelers' Workshop; Boston, MA June 5, 2018

2018 EPA PROPOSAL FOR REVISION OF PM_{2.5} MODELING GUIDANCE

Primary PM _{2.5} Emissio ns	imary 1 _{2.5} nissio ns		Secondary PM _{2.5} Modeling Required? 2014 Guidance Proposed 2018 Guidance					
> 10 tpy	> 40 tpy	>40 tpy	YES; Both NOx and SO ₂	YES; Both NOx and SO ₂				
> 10 tpy	> 40 tpy	<40 tpy	Yes; Only NOx	Yes; Both NOx and SO ₂				
>10 tpy	<40 tpy	>40 tpy	Yes; Only SO ₂	Yes; Both NOX and SO ₂				
> 10 tpy	< 40 tpy	< 40 tpy	No	Yes; Both NOx and SO ₂				
< 10 tpy	> 40 tpy	< 40 tpy	Yes; Only NOx	Yes; Both NOx and SO ₂				
2018 proposal: All cases above will also require primary PMB2 thodeling tpy								

2018 EPA PROPOSAL FOR **REVISION** OF PM_{2.5} MODELING GUIDANCE - IMPACT

- More projects will trigger secondary PM_{2.5} modeling
- PM_{2.5} primary emission calculations need to be less conservative if NOx and/or SO₂ emissions are > 40 tpy
- Modeling of low-level fugitive $PM_{2.5}$ emissions could be challenging if conservative speciation ($PM_{10} = PM_{2.5}$) is used and/or poor dispersion
- Need to have realistic emission factors for NOx and not just AP42 factors to avoid modeling and/or lower the secondary PM_{2.5} impact

SUMMARY AND RECOMMENDATION

- Secondary PM_{2.5} impacts must be accounted for in PSD AQIA
- Tiered approach provides flexibility to avoid complex chemical transport modeling – "credible and representative"' justification may be challenging
 - MERP is a viable Tier 1 option to avoid complex chemical transport modeling justification for "representativeness" required
- Case-by-case approach embedded in regulatory language may lead to inconsistencies across the permitting agencies nationwide
- Lower proposed annual SIL if codified, may lead to additional burden on NAAQS compliance demonstration in highly industrial areas
- Proposed 2018 modeling guidance if finalized will require more projects to conduct secondary PM_{2.5} modeling

Strongly Recommended

Pre-modeling discussion with agencies on PM_{2.5} AQIA approach to avoid remodeling and delay in permit application approval

ARIJIT PAKRASI, PH.D., P.E.

Air Quality Management Service – Practice Leader apakrasi@edge-es.com

CORPORATE HEADQUARTERS

16285 Park Ten Place, Suite 400 Houston, Texas 77084 832.772.3000

ADDITIONAL LOCATIONS Asheville + Baton Rouge + Denver